Low Power Nanoelectronics Research Group 

Transistors are the vital building blocks of all electrical devices, from computers to mobile phones. As consumers demand more and more features, the size of the transistors has to be reduced, with several billion crowding on to a single chip. At such nanoscale regime, the traditional operation of transistor in the strong inversion region becomes an issue due to the power consumption. A possible solution is the use of subthreshold operation over full swing operation as the ultra low power consumption is the primary criterion instead of high speed operation. Devices and circuits based on low power operation are widely used in cellular phones, personal digital assistants, medical electronics, and other portable devices.


Our research focusing on ultra low power/low power operation would cater to the design and optimization of nanoscale devices and circuits for logic, memory, analog and RF applications. The research would utilize conventional CMOS and non-CMOS transistor architectures to address the problems at fundamental level. The research is expected address the above critical issues, provide optimal guidelines for low power device and circuit design, and provide solutions to the semiconductor industry.



Publications (2011 onwards):

(for publications prior to 2011, please visit the link:

http://abhinavkranti.yolasite.com/publications1.php)



2018:


1. Emerging FETs for low power and high speed embedded dynamic random access memory, Md. H.R. Ansari, N. Navlakha, J.-T. Lin and A. Kranti, IEEE International Conference on VLSI Design, Pune, India, 2018, Accepted.

2. Hysteresis free sub-60 mV/dec subthreshold swing in junctionless MOSFETs,
M. Gupta and A. Kranti, IEEE International Conference on VLSI Design, Pune, India, 2018, Accepted.


3. Doping dependent assessment of accumulation mode and junctionless FET for 1T DRAM, Md.H.R. Ansari, N. Navlakha, J.-T. Lin, and A. Kranti, IEEE Trans. Electron Devices, vol. 65, pp. 1205-1210, 2018.

4. A model for gate-underlap dependent short channel effects in junctionless MOSFET,
N. Jaiswal, and A. Kranti, IEEE Trans. Electron Devices, vol. 65, pp. 881-887, 2018.


5. Dielectric modulated biosensor architecture: Tunneling or accumulation based transistor?, P. Dwivedi and A. Kranti, IEEE Sensors Journal, vol. 18, pp. 3228-3235, 2018.


6. Two dimensional electron gases in MgZnO/ZnO and ZnO/MgZnO/ZnO heterostructures grown by dual ion beam sputtering, R. Singh, Md.A. Khan, P. Sharma, M.T. Htay, A. Kranti and S. Mukherjee, Journal of Physics D: Applied Physics, vol. 51, article 13LT02, 2018.


7. Raised source/drain Germanium junctionless MOSFET for sub-thermal off-to-on transition, M. Gupta and A. Kranti, IEEE Trans. Electron Devices, vol. 65, pp. 2406-2412, 2018.


8. Enhanced sheet charge density in DIBS grown CdO alloyed ZnO buffer based heterostructure, Md.A. Khan, R. Singh, R. Bhardwaj, A. Kumar, A.K. Das, P. Misra, A. Kranti, and S. Mukherjee, IEEE Electron Device Letters, vol. 39, pp. 827-830, 2018.


9. High retention with n-oxide-p junctionless architecture for 1T DRAM, Md.H.R. Ansari, N. Navlakha, J.-T. Lin, and A. Kranti, IEEE Trans. Electron Devices, vol. 65, pp. 2797-2803, 2018.


10. Role of surface states and interface charges in 2DEG in sputtered ZnO heterostructure, R. Singh, Md.A. Khan, S. Mukherjee, and A. Kranti, IEEE Trans. Electron Devices, vol. 65, pp. 2850-2854, 2018.


11. Regaining switching by overcoming single transistor latch in Ge junctionless MOSFETs, M. Gupta, and A. Kranti, IEEE Trans. Electron Devices, Accepted, 2018.


12. Modeling short channel effects in asymmetric junctionless MOSFETs with underlap, N. Jaiswal, and A. Kranti, IEEE Trans. Electron Devices, Accepted, 2018.


13. Influence of material parameters on the performance of accumulation mode DRAM, Md.H.R. Ansari, N. Navlakha, J.-T. Lin and A. Kranti, International Conference on Solid State Devices and Materials (SSDM), Tokyo, Japan, 2018, Accepted.


14. 1T DRAM with vertically stacked n-oxide-p architecture, Md.H.R. Ansari, N. Navlakha, J.-T. Lin, and A. Kranti, IEEE S3S Conference, San Francisco, USA, Accepted, 2018.


15. Performance assessment of TFET architectures as 1T-DRAM, N. Navlakha, Md.H.R. Ansari, Md.H.R. Ansari, Md.H.R. Ansari, J.-T. Lin, and A. Kranti, IEEE S3S Conference, San Francisco, USA, Accepted, 2018.


16. Physical insights on junction controllability for improved performance of planar trigate tunnel FET as capacitorless dynamic memory, N. Navlakha, and A. Kranti, International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Austin, USA, Accepted, 2018.


17. Effects of bulk-defects and metal/bulk interface anomalies in a forming-free double-barrier memristor, A. Kumar, S. Mukherjee, and A. Kranti, Journal of Physics D: Applied Physics, Accepted, 2018.



2017:


1. Steep switching Germanium junctionless MOSFET with reduced off-state tunneling, M. Gupta and A. Kranti, IEEE Trans. Electron Devices, vol. 64, pp. 3582-3587, 2017.


2. Analytical model for 2DEG density in graded MgZnO/ZnO heterostructures with cap layer, R. Singh, Md. A. Khan, S. Mukherjee and A. Kranti, IEEE Trans. Electron Devices, vol. 64, pp. 3661-3667, 2017


3. Hysteresis free negative total gate capacitance in junctionless transistors, M. Gupta, and A. Kranti, Semiconductor Science and Technology, vol. 32, 095014, 2017.


4. Variation of threshold voltage with temperature in impact ionization induced steep switching Si and Ge junctionless MOSFETs, M. Gupta and A. Kranti, IEEE Trans. Electron Devices, vol. 64, pp. 2061-2066, 2017.


5. Retention and scalability perspective of sub-100 nm double gate tunnel FET DRAM, N. Navlakha, J.-T. Lin, and A. Kranti, IEEE Trans. Electron Devices, vol. 64, pp. 1561-1567, 2017. 


6. Insights into operation of planar tri-gate tunnel field effect transistor for dynamic memory application, N. Navlakha, and A. Kranti, Journal of Applied Physics, vol. 122, article 044502, 2017.


7. Applicability of transconductance-to-current ratio (gm/Ids) as a sensing metric for tunnel FET biosensors,  P. Dwivedi and A. Kranti, IEEE Sensors Journal, vol. 17, pp. 1030-1036, 2017.


8. A new electron bridge channel 1T-DRAM emplying underlap region charge storage, J.-T. Lin, W.-H. Lee, P.-H. Lin, S.W. Haga, Y.-R. Chen and A. Kranti, IEEE Journal of Electron Device Society, vol. 5, pp. 59-63, 2017.


9. Forming-free high-endurance Al/ZnO/Al memristor fabricated by dual ion beam sputtering, A. Kumar, M. Das, V. Garg, B.S. Sengar, M.T. Htay, S. Kumar, A. Kranti, and S. Mukherjee, Applied Physics Letters, vol. 110, article 253509, 2017.


10. Insights into operation of planar tri-gate tunnel field effect transistor for dynamic memory application, N. Navlakha, and A. Kranti, Journal of Applied Physics, vol. 122, article 044502, 2017.


11. Extraction of mobility and degradation coefficients in double gate junctionless transistors, Y.V. Bhuvaneshwari and A. Kranti, Semiconductor Science and Technology, In Press, 2017.


12. Buffer layer engineering for high (> 1013 cm-3) 2DEG density in ZnO based heterostructures, Md. A. Khan, R. Singh, S. Mukherjee and A. Kranti, IEEE Trans. Electron Devices, vol. 64, pp. 1015-1019, 2017.


13. Vertical transistor with n-bridge and body on gate for low power 1T-DRAM application, J.-T. Lin, H.-H. Lin, Y.-J. Chen, C.-Y. Yu, A. Kranti, C.-C. Lin and W.-H. Lee, IEEE Trans. Electron Devices, vol. 64, pp. 4937-4945, 2017



2016:


1. Investigation of barrier inhomogeneities and interface state density in Au/MgZnO:Ga Schottky contact, R. Singh, Md. A. Khan, V. Garg, V. Awasthi, A. Kranti and S. Mukherjee, Journal of Physics D: Applied Physics, vol. 49, article 445303, 2016.


2. Transforming gate misalignment into a unique opportunity to facilitate steep switching in junctionless transistors, M. Gupta, and A. Kranti, Nanotechnology, vol. 27, article 455204, 2016. 


3. Improved retention time in twin gate 1T DRAM with tunneling based read mechanism, N. Navlakha, J.-T. Lin, and A. Kranti, IEEE Electron Device Letters, vol. 39, pp. 1127-1130, 2016.


4. Improving retention time in tunnel field effect transistor based dynamic memory by back gate engineering, N. Navlakha, J.-T. Lin, and A. Kranti, Journal of Applied Physics, vol. 119, article 214501, 2016.


5. Sidewall spacer optimization for steep switching junctionless transistors, M. Gupta and A. Kranti, Semiconductor Science and Technology, vol. 31, article 065017, 2016.


2015:


1. Impact of channel doping and spacer architecture on analog/RF performance of low power junctionless MOSFETs, D. Ghosh, and A. Kranti, Semiconductor Science and Technology, vol. 30, article 015002, 2014.


2. Germanium junctionless MOSFET with steep subthreshold swing, M. Gupta, and A. Kranti, 227th ECS Meeting, International Symposium on Advanced CMOS Compatible Semiconductor Devices, Chicago, USA, In Proc. ECS Trans., vol. 66, no. 5, pp. 79-86, 2015. 


3. Enhanced sensitivity of junctionless transistor architecture for biosensing applications, M.S. Parihar and A. Kranti, Nanotechnology, vol.  26, article 145201, 2015.



2014:


1. Revisiting the doping requirement for low power junctionless MOSFETs, M.S. Parihar, and A. Kranti, Semiconductor Science and Technology, vol. 29, article 075006, 2014.


2. Back bias induced dynamic and steep subthreshold swing in junctionless transistors, M.S. Parihar, and A. Kranti, Applied Physics Letters, vol. 105, article 033503, 2014.

3.
Performance assessment of ULP analog/RF MOSFET architectures, D. Ghosh and A. Kranti, IEEE S3S Conference, California, USA, Accepted, 2014.

4. Junctionless composite transistor for ultra low power logic applications, A. Kumar, M.S. Parihar, and A. Kranti, IEEE International Nanoelectronics Conference (INEC), Sapporo, Japan, Accepted, 2014.

5. Junctionless transistors for dynamic memory and sensing applications, M.S. Parihar, and A. Kranti,
IEEE International Nanoelectronics Conference (INEC), Sapporo, Japan, Accepted, 2014.

6.
Volume accumulated double gate junctionless MOSFETs for low power logic technology applications, M.S. Parihar, and A. Kranti, IEEE International Symposium on Quality Electron Design, Santa Clara, USA, pp. 335-340, 2014.


7. Performance optimization and parameter sensitivity analysis of ultra low power junctionless MOSFETs, M.S. Parihar, and A. Kranti, International Conference on VLSI Design, Mumbai, pp. 439-443, 2014.


2013:


1. Single transistor latch phenomenon in junctionless transistors, M.S. Parihar, D. Ghosh, and A. Kranti, Journal of Applied Physics, vol. 113, article no. 184503, 2013.


2. Ultra low power junctionless MOSFETs for subthreshold logic applications, M.S. Parihar, D. Ghosh, and A. Kranti, IEEE Trans. Electron Devices, vol. 60, no. 5, pp. 1540-1546, 2013.


3. Occurrence of zero gate oxide thickness coefficient in junctionless transistors, M.S. Parihar, D. Ghosh, and A. Kranti, Applied Physics Letters, vol. 102, article no. 203509, 2013.


4. Single transistor latch phenomena in junctionless nanotransistors, M.S. Parihar, D. Ghosh, G.A. Armstrong and A. Kranti, IEEE International Nanoelectronics Conference (INEC), Singapore, pp. 72-73, 2013.


5. Optimizing nanoscale MOSFET architecture for low power analog/RF applications, D. Ghosh, M.S. Parihar and A. Kranti, IEEE International Nanoelectronics Conference (INEC), Singapore, pp. 22-23, 2013.


6. RF performance of ultra low power junctionless MOSFETs, D. Ghosh, M.S. Parihar and A. Kranti, Asia Pacific Microwave Conference, Seoul, pp. 787-789, 2013.


7. Bipolar attributes of unipolar junctionless MOSFETs, M.S. Parihar and A. Kranti, International Workshop on Physics of Semiconductor Devices (IWPSD), pp. 169-170, 2013.



2012:


1. Device design and estimated performance for p-type junctionless transistors on bulk germanium substrates, R. Yu, S. Das, I. Ferain, P. Razavi, M. Shayesteh, A. Kranti, R. Duffy and J.P. Colinge, IEEE Trans. Electron Devices, vol. 59, no. 9, pp. 2308- 2313, 2012.


2. High performance junctionless MOSFETs for ultra low power analog/RF applications, D. Ghosh, M.S. Parihar, G.A. Armstrong and A. Kranti, IEEE Electron Device Letters, vol. 33, no. 10, pp. 1477-1479, 2012.


3. Bipolar effects in unipolar junctionless transistors, M.S. Parihar, D. Ghosh, G.A. Armstrong, R. Yu, P. Razavi and A. Kranti, Applied Physics Letters, vol. 101, no. 9, article 903507, 2012.


4. Bipolar snapback in junctionless transistors for capacitorless dynamic random access memory, M.S. Parihar, D. Ghosh, G.A. Armstrong and A. Kranti, Applied  Physics Letters, vol. 101, no. 26, article 263503, 2012.


5. Optimally designed moderately inverted double gate SOI MOSFETs for low-power RFICs, Dipankar Ghosh, Mukta Singh Parihar, G. Alastair Armstrong, and A. Kranti, Semiconductor Science and Technology, vol. 27, article 125004, 2012.


6. Sensitivity Analysis of steep Subthreshold Slope (S–slope) in Junctionless Nanotransistors, M.S. Parihar, D. Ghosh, G.A. Armstrong, R. Yu, P. Razavi, S. Das, I. Ferain, and A. Kranti, In Proc. IEEE International Conference on Nanotechnology, Birmingham, UK, 2012.


7. Low Power Nanoscale RF/Analog MOSFETs, D. Ghosh, M.S. Parihar, G.A. Armstrong and A. Kranti, In Proc. IEEE International Conference on Nanotechnology, Birmingham, UK, 2012.



2011:


1. Junctionless nanowire transistor: complementary metal-oxide-semiconductor without junctions, J.-P. Colinge, I. Ferain, A. Kranti, C.-W. Lee, N. Akhavan, P. Razavi, R. Yan and R. Yu, Science of Advanced Materials, vol. 3, no. 3, pp. 1–6, 2011. 


2. Influence of elastic and inelastic electron–phonon interaction on quantum transport in multigate silicon nanowire MOSFETs, N. Akhavan, A. Afzalian, A. Kranti, I. Ferain, C.-W. Lee, R. Yan, P.  Razavi, R. Yu and J.-P. Colinge, IEEE Trans. Electron Devices, vol. 58, no. 4, pp. 1029-1037, 2011.


3. Investigation of high-performance sub-50 nm junctionless nanowire transistors, R. Yan, A. Kranti, I. Ferain, C.-W. Lee, R. Yu, N. Akhavan, P. Razavi and J.-P. Colinge, Microelectronics Reliability, vol. 51, no. 7, pp. 1166-1071, 2011.


4. Junctionless multiple-gate transistors for analog applications, R.D. Doria, M.A. Pavanello, R.D. Trevisoli, M. de Souza, C.-W. Lee, I. Ferain, N.D. Akhavan, R. Yan, P. Razavi, R. Yu, A. Kranti and J.-P. Colinge, IEEE Trans. Electron Devices, vol. 58, no. 8, pp. 2511 - 2519, 2011.


5. Extraction of channel mobility in nanowire MOSFETs using Id(Vg) characteristics and random telegraph noise amplitude, A.N. Nazarov, C.W. Lee, A. Kranti, I. Ferain, R. Yan, N. Akhavan, P. Razavi, R. Yu and J.-P. Colinge, In Proc. Ultimate Integration on Silicon (ULIS), Cork, Ireland, pp. 107-109, 2011.


6. Junctionless transistors: physics and properties, J.P. Colinge, C.W. Lee, N. Akhavan, R. Yan, I. Ferain, P. Razavi, A. Kranti and R. Yu, In Proc. International Semiconductor-on-Insulator Workshop on Nanoscaled Semiconductor-on-Insulator Materials, Sensors and Devices, Kyiv, Ukraine, pp. 187-200, 2011.


7. Comparative study of random telegraph noise in junctionless and inversion-mode MuGFETs, A.N. Nazarov, C.W. Lee, A. Kranti, I. Ferain, R. Yan, N. Akhavan, P. Razavi, R. Yu, J.P. Colinge, In Proc. ECS Transactions: 219th ECS Meeting on Advanced Silicon-on-Insulator Technology and Related Physics, Montreal, Canada, vol. 35, no. 5, pp. 73-78, 2011.


8. The roles of the electric field and the density of carriers in the improved output conductance of junctionless nanowire transistors, R.T. Doria, M.A. Pavanello, R.D. Trevisoli, M. Souza, C.W. Lee, I. Ferain, N. Akhavan, R. Yan, P. Razavi, R. Yu, A. Kranti and J.P. Colinge, In Proc. ECS Transactions: 219th Meeting on Advanced Silicon-on-Insulator Technology and Related Physics, Montreal, Canada, vol. 35, no. 5, pp. 283-288, 2011.


9. A simulation comparison between junctionless and inversion-mode MuGFETs, J.P. Colinge, A. Kranti, R. Yan, I. Ferain, N. Akhavan, P. Razavi, C.W. Lee, R. Yu and C.A. Colinge, In Proc. ECS Transactions: 219th ECS Meeting on Advanced Silicon-on-Insulator Technology and Related Physics, Montreal, Canada, vol. 35, no. 5, pp. 63-72, 2011.


10. Source/Drain Engineered Ultra Low Power Analog/RF UTBB MOSFET, A. Kranti, J.-P. Raskin and G.A. Armstrong, In Proc. Ultimate Integration on Silicon (ULIS), Cork, Ireland, Digital Object Identifier: 10.1109/ULIS.2011.5757997, 2011.


11. Analytical model for the threshold voltage of junctionless nanowire transistors, R. D. Trevisoli, M. A. Pavanello, R. T. Doria, M. de Souza, C.W. Lee, I. Ferain, N. Dehdashti Akhavan, R. Yan, P. Razavi, R. Yu, A. Kranti and J.P. Colinge, In Proc. Workshop of the Thematic Network on Silicon on Insulator Technology, Devices and Circuits (EuroSOI), Granada, Spain, pp. 67-68, 2011.


12. Extraction of flat-band voltage and parasitic resistance in junctionless MuGFETs, A.N. Nazarov, C.W. Lee, A. Kranti, I. Ferain, R. Yan, N. Dehdashti Akhavan, P. Razavi, R. Yu, JP Colinge, In Proc. Workshop of the Thematic Network on Silicon on Insulator Technology, Devices and Circuits (EuroSOI), Granada, Spain, pp. 53-54, 2011.




















 

Make a free website with Yola